Forecasting Energy Consumption Using Fuzzy Transform and Local Linear Neuro Fuzzy Models
نویسندگان
چکیده
منابع مشابه
Forecasting Energy Consumption Using Fuzzy Transform and Local Linear Neuro Fuzzy Models
This paper proposes a hybrid approach based on local linear neuro fuzzy (LLNF) model and fuzzy transform (F-transform), termed FT-LLNF, for prediction of energy consumption. LLNF models are powerful in modelling and forecasting highly nonlinear and complex time series. Starting from an optimal linear least square model, they add nonlinear neurons to the initial model as long as the model's accu...
متن کاملMid-Term Energy Demand Forecasting by Hybrid Neuro-Fuzzy Models
This paper proposes a structure for long-term energy demand forecasting. The proposed hybrid approach, called HPLLNF, uses the local linear neuro-fuzzy (LLNF) model as the forecaster and utilizes the Hodrick–Prescott (HP) filter for extraction of the trend and cyclic components of the energy demand series. Besides, the sophisticated technique of mutual information (MI) is employed to select the...
متن کاملFuzzy and Neuro-fuzzy Computing Models for Electric Load Forecasting
Two new computing models, namely a fuzzy expert system and a hybrid neural network-fuzzy expert system for time series forecasting of electric load, are presented in this paper. The fuzzy-logic-based expert system utilizes the historical relationship between load and dry-bulb temperature, and predicts electric loads fairly accurately, 1-24 h ahead. In the case of the hybrid neural network-fuzzy...
متن کاملModeling Lake Urmia Water-Level Changes using Local Linear Neuro-Fuzzy Method
According to the water resources and climate change and challenges of Urmia Lake basin, which is the discharge and final destination of North West Rivers, a model was presented. Due to climate change and water resources in river basin such as rainfall, climate change in basin that has direct impact on evaporation over water catchment areas and lake water, this model can be provided. In addition...
متن کاملPrediction Intervals for Short-Term Load Forecasting Neuro-Fuzzy Models
In the paper the problem of estimation of the prediction intervals (error bars) for the family neuro-fuzzy Short-Term Load Forecasting (STLF) models is discussed. We investigate two neuro-fuzzy networks: Fuzzy Basis Function (FBF) Networks, and linear neuro-fuzzy model with Tagagi-Sugeno reasoning. The paper contains comparison of selected most important methods for error bars calculation (anal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal on Soft Computing
سال: 2011
ISSN: 2229-7103
DOI: 10.5121/ijsc.2011.2402